Suche...
Generic filters
Exact matches only
Search in title
Search in excerpt
Search in content

VDI-Stellungnahme zur H2-Readiness von LNG-Terminals

Kategorie:
Thema:
Autor: Jonas Völker

VDI-Stellungnahme zur H2-Readiness von LNG-Terminals
Schon bei der Planung von LNG-Terminals gilt es, die H2-Readiness mit zu bedenken. Foto: Mike Mareen - stock-adobe.com

Für den Klimaschutz ist es notwendig, fossile Energieträger zu ersetzen. Dies wird im Fall von Erdgas aktuell durch den Ukraine-Krieg und die Abhängigkeit von russischem Erdgas verstärkt. Daher plant die Bundesregierung den Einsatz von bis zu vier schwimmenden Terminals und den Bau von zwei stationären LNG-Terminals in Brunsbüttel und in Stade. Der VDI weist auf den Einbezug einer Wasserstoffnutzung bei der Planung hin und zeigt in einer Pressemitteilung, warum das so wichtig ist.

LNG-Terminals auch für grüne Gase nutzen

In der aktuellen Situation ist der Bau von LNG-Terminals sehr dringlich. Da es sich hierbei um langfristige Investitionen handelt, spricht sich der VDI dafür aus, dass sich die Terminals auch für den Import von grünen Gasen wie zum Beispiel flüssigem Wasserstoff (LH₂) nutzen lassen sollten. Wenn die LNG-Terminals im Winter einen Gasnotstand mit seinen Folgen für Industrie und Bevölkerung verhindern, sind die Kosten für einen Neubau von LH₂-Terminals im Vergleich dazu jedoch vermutlich gering.

Um ein LNG-Terminal auf LH₂ umzustellen, ist es vor allem sinnvoll, dass mindestens die langlebigen Großkomponenten, wie beispielsweise die Tanks von Beginn an nicht nur für LNG, sondern auch für LH₂ geeignet sind. Zu beachten sind hierbei vor allem die deutlichen Temperaturunterschiede: Flüssiges Erdgas hat eine Temperatur von minus 163 Grad Celsius und flüssiger Wasserstoff von minus 253 Grad Celsius.

Die Anforderungen an die thermische Isolierung werden damit deutlich höher gesetzt. Die Anforderungen an die metallischen Werkstoffe fallen ebenfalls etwas höher aus, jedoch nicht so dramatisch: Bereits heute werden im LNG-Bereich Stähle eingesetzt, die sich für Wasserstoff grundsätzlich eignen. Ist dies jedoch nicht der Fall, kann es zu Versprödungen und Rissen im Material kommen.

Für die Regasifizierung von flüssigem Wasserstoff benötigt man eine ähnliche (0,35 MJ/Nm³) Wärme wie bei LNG (0,6 MJ/Nm³), bei einem etwas niedrigeren Heizwert von Wasserstoff (10,7 MJ/Nm³ versus 35,7 MJ/Nm³ beim Erdgas). Es würde sich anbieten, die Verdampfer für die Regasifizierung modular erweiterbar zu gestalten, um die nötige Flexibilität bezüglich der erforderlichen Wärmeleistung zu erreichen.

Generell wäre es vernünftig, Umgebungswärme (Luft, Seewasser) zur Anwärmung anstelle der Verbrennungswärme einzusetzen. Für die größeren kühleren Luft- und Wassermengen muss jedoch die Umweltverträglichkeit überprüft werden, etwa der Einfluss auf das betroffene Ökosystem. Die LH₂-Kälte ist auch energetisch sehr wertvoll, denn aus dieser Kälte lässt sich theoretisch 1,7-mal so viel Kälte gewinnen als aus Erdgas (1,3 MJ/Nm³ versus 0,75 MJ/Nm³). Daher sollte man die LH₂-Kälte nach Möglichkeit nutzen, etwa für Prozesskälte-Anwendungen in der Industrie.

Ein weiterer wichtiger Aspekt ist der Umgang mit dem Boil-off-Gas, welches durch die LH₂-Verdampfung im Speicherbehälter (bedingt durch unvollkommene thermische Isolation) entsteht. Dieses kann verdichtet und in eine Pipeline eingespeist werden, die hierbei genutzten Verdichter müssen ebenfalls wasserstoffgeeignet sein.

Betrieb von Terminals mit Wasserstoff mit planen

Zusammengefasst lässt sich feststellen, dass ein Terminal, das für LNG und später für LH₂ genutzt werden kann, am besten gleich so geplant und gebaut werden muss, als würde es ausschließlich mit flüssigem Wasserstoff betrieben. Eine spätere Nachrüstung ist zwar möglich, aber wirtschaftlich nicht sinnvoll, da zu viele Großkomponenten ausgetauscht werden müssten.

Noch ist allerdings nicht klar, in welcher Form Wasserstoff zukünftig transportiert wird, als LH₂ oder alternativ transformiert in Form von beispielsweise grünem Ammoniak oder grünem Methan. Sofern das Ammoniak direkt genutzt werden kann, könnte dies Vorteile gegenüber LH₂ haben. Wird das grüne Ammoniak wieder in Wasserstoff transformiert, sind die Energieverluste so groß, dass dieser Weg zumindest gegenwärtig schlechter als der LH₂-Import abschneidet.

Wenn sich aber in der Zukunft zeigt, dass das Verschiffen in Form von Ammoniak oder grünem Methan wirtschaftlicher ist, so könnten sich die zusätzlichen Investitionen für “H₂-Readiness” jedoch auch als Fehlinvestition erweisen.

Mit der Entwicklung einer Wasserstoffinfrastruktur beschäftigen sich die Wasserstoff-Leitprojekte TransHyDE und H2Mare. Beide Projekte bestehen aus weiteren Unterprojekten, die sich mit verschiedenen Themen der H₂-Infrastruktur befassen.

Weitere Informationen gibt es unter www.vdi.de.

atp magazin - Unsere Themen

Bleiben Sie auf dem aktuellen Stand der Technik  in
diesen Bereichen der Automatisierungstechnik:

atp weekly

Der Newsletter der Branche

Ihr kostenfreier E-Mail-Newsletter für alle Belange der Automatiserung.

Das könnte Sie auch interessieren:

KI: Whitepaper zeigt Potenziale für Green Deal
Bitkom-Studie: Digitalisierung unabdingbar für Klimaziele
Digital Business: Studie zeigt Stand der Prozessautomatisierung auf

Sie möchten das atp magazin testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen das atp magazin kostenlos und unverbindlich zur Probe!

Finance Illustration 03